
ChiSeL: Graph Similarity Search using Chi-Squared
Statistics in Large Probabilistic Graphs

Shubhangi Agarwal
Computer Sc. & Engg.

Indian Institute of Technology
Kanpur, India

sagarwal@cse.iitk.ac.in

Sourav Dutta
Huawei Research Centre

Dublin
Ireland

sourav.dutta2@huawei.com

Arnab Bhattacharya
Computer Sc. & Engg.

Indian Institute of Technology
Kanpur, India

arnabb@cse.iitk.ac.in

ABSTRACT
Subgraph querying is one of the most important primitives in many
applications. Although the field is well studied for deterministic
graphs, in many situations, the graphs are probabilistic in nature.
In this paper, we address the problem of subgraph querying in large
probabilistic labeled graphs. We employ a novel algorithmic frame-
work, called CHISEL, that uses the idea of statistical significance
for approximate subgraph matching on uncertain graphs that have
uncertainty in edges. For each candidate matching vertex in the
target graph that matches a query vertex, we compute its statistical
significance using the chi-squared statistic. The search algorithm
then proceeds in a greedy manner by exploring the vertex neighbors
having the largest chi-square score. In addition to edge uncertainty,
we also show how CHISEL can handle uncertainty in labels and/or
vertices. Experiments on large real-life graphs show the efficiency
and effectiveness of our algorithm.

PVLDB Reference Format:
Shubhangi Agarwal, Sourav Dutta, Arnab Bhattacharya. ChiSeL: Graph
Similarity Search using Chi-Squared Statistics in Large Probabilistic Graphs.
PVLDB, 13(10): 1654-1668, 2020.
DOI: https://doi.org/10.14778/3401960.3401964

Keywords
Probabilistic Graph; Subgraph Query; Chi-Square Statistic; Statis-
tical Significance; Greedy Neighborhood Search

1. INTRODUCTION
Motivation. The current impetus on Internet-of-Things (IoT)

and hyper-connectivity for future cities, factories and organizations
has fueled a dramatic proliferation of linked open data, social com-
munities and inter-connected network structures across the World
Wide Web. Such large data sources are best represented as la-
beled graphs, where entities are modeled as vertices, relationships
and inter-dependencies are captured by edges, and labels define the
characteristics of entities and relations. These large graphs form the
backbone for several real-life domains such as social networks [1],
protein and chemical interaction data [8], bioinformatics [30], route

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 10
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3401960.3401964

planning [17], etc. Efficient large-scale graph matching techniques,
thus, provide a fundamental area of research [63, 80].

Probabilistic Graphs. In real-world scenarios, however, the
obtained data is often inherently uncertain due to noisy measure-
ments (e.g., missing edges or labels) [2], hardware limitations [6],
inference models [28], multiple data-source merging [60], privacy-
preserving perturbation [11], etc. For example, pairwise protein
interactions are usually derived by statistical models while poten-
tial interactions in social networks are based on trust and influence
factors [42]. Similarly, confidence values may be associated with
extracted facts by information extraction systems [12]. Further, in
many scenarios, information is often vague or ambiguous, express-
ing subjective opinions and judgment concerning market analysis,
medical diagnosis or even personal evaluation. Such uncertainties
can be classified into three categories [69]:
(1) identity uncertainty where an entity is represented by multiple
objects or references in the data,
(2) attribute uncertainty about the attribute values of entities (e.g.,
vertex existence or label uncertainty), and
(3) relationship uncertainty about whether a particular relationship
exists (e.g., edge existence or label uncertainty).

A natural way to capture graph uncertainty is to represent them
as probabilistic graphs [43, 87], where each entity, relation, or
characteristics is associated with a probability quantifying the exis-
tence likelihood [33], for cases like representative graphs [79] and
in named entity resolution [69]. For example, in automated cre-
ation of knowledge bases such as YAGO and DBpedia, extraction
of entities, facts and relationships have an associated confidence de-
pending on the veracity of the data source, information extraction
technique, and errors in the pipeline. Without loss of generality,
in this work, we only consider the existence of edge uncertainties,
i.e., each relationship between entities has an associated probability
or confidence of existence.

Existing literature defines two main representations of edge un-
certainty in probabilistic graphs [38, 64]:
(1) edge-existential model, where each edge is quantified with a
probability indicating the chance of edge existence, and
(2) weight-distribution model, where each edge is associated with
a probability distribution of weight values.

We adopt the former representation model in this work. Later, in
Section 4, we discuss how various other scenarios involving vertex,
edge, and label uncertainties can be handled by our algorithm.

Graph Querying. Various modern-day applications like ques-
tion answering, motif discovery, etc., necessitate efficient approach-
es for label and structural pattern matching on large graphs [3].
This involves efficient indexing and querying approaches for large
graphs. A common well-studied deterministic graph query prim-
itive is to search, within a large graph, for query structures that

1654

are similar both in terms of labels and structure. This allows one
to express related groups of entities with given attributes and link
structures as subgraph pattern matching queries.

Traditional approaches for such queries involve graph isomor-
phism, where an exact match is required in the context of both
graph structure and labels. The problem of graph isomorphism has
been shown to be quasi-polynomial [7], while subgraph isomor-
phism is known to be NP-complete [19]. Consequently, efficient
and accurate subgraph matching heuristics have been explored [27,
48, 102]. However, due to noisy and non-deterministic nature of
probabilistic graphs, traditional approaches applicable to determin-
istic graph problems cannot be directly applied owing to scalability
and accuracy issues. Hence, approximate graph matching tech-
niques are required to handle queries in a robust and real-time man-
ner. It has been shown that sometimes methods for probabilistic
matches outperform exact matching algorithms [98] in many as-
pects. An overview of challenges and techniques for various prob-
lems related to uncertain graphs can be found in [47]. This work
proposes a robust and efficient algorithm for approximate subgraph
matching in large probabilistic graphs.

Possible World Semantics. One important concept in relation to
probabilistic data querying is the possible world semantics (PWS).
It specifies that the (approximate) matching subgraph (to the query)
computed should ideally be the one with the maximum overall ex-
istential probability across all the possible combinatorial instances
of the uncertain graph considering the probabilities of the entities,
relationships, and attributes. Here, each “possible world” is a de-
terministic instance of the uncertain graph [21, 97] considering the
existential probabilities of the graph attributes.

It is important to observe that the exponential nature of the pos-
sible world semantics usually renders exact query evaluation com-
putationally prohibitive. In fact, even simple queries become #P-
complete on graphs [71, 87]. A common solution is to apply in-
telligent sampling based techniques (e.g., Monte-Carlo) to assess
the query on a subset of possible worlds [71]. However, in gen-
eral, a large number of samples are required to obtain a good ap-
proximation and, for complex queries, such sampling methods be-
come ineffective [71]. We empirically demonstrate this behavior in
Section 5.5.4. This necessitates efficient algorithms for subgraph
matching in uncertain graphs. In this work, we consider the above
PWS concept, and also consider the edge probabilities to be inde-
pendent, following existing literature [42, 43, 72].

Challenges in PWS. It can be observed that PWS introduces
a major challenge for approximate graph matching queries. There
exists a trade-off between match similarity (in terms of graph struc-
ture and labels) and probability of existence, which is not currently
addressed in the literature (to the best of our knowledge).

For example, assume a chain query graph A—B—C—D. Con-
sider the resultant matching subgraph (from an input target graph)
to return two competing results: 〈A—B—E—D〉 demonstrating
large structural and label similarity and 〈A—B—D〉 having the
highest existential probability w.r.t. PWS. In such cases it might be
difficult to assess as to which is a better match to q. Current meth-
ods aim to tackle such problem by introducing thresholds [33, 93,
95], i.e., only results having structural similarity and/or existential
probability greater than some thresholds are returned.

We propose an integrated measure based on a formulation us-
ing statistical significance to capture both the PWS concept and the
above trade-off for approximate matching subgraphs – the returned
results demonstrate both high structural similarity and a high prob-
ability of existence. We also showcase that this approach inherently
bypasses the efficiency and scalability issues introduced by the enu-
meration requirement of PWS.

1.1 Real-World Use-Cases
With the proliferation of electronic medical records, one of the

current research areas in the medical domain is symptom-disease-
diagnostics knowledge graphs [75, 88] that capture the relation-
ships between symptoms and diseases. The nodes represent symp-
toms (e.g., cough, fever, etc.) and diseases (e.g., flu) while the
edges provide the probabilities of symptom-disease association. For
example, if cough is a common symptom for flu but not malaria, the
edge connecting cough to flu will have a high probability, whereas
the edge connecting cough to malaria will be either absent (if it is
not a symptom at all) or have a very low probability.

An important application scenario using the above knowledge
graph is the following. Given a patient’s symptoms (modeled as
a query graph), an approximate probabilistic subgraph matching
algorithm would extract the most probable diseases linked to the
current symptoms. The results would be then presented to expe-
rienced medical professionals for planning the course of treatment
for the patient. The possible worlds semantics (PWS) automati-
cally models the highest overall probability of association between
the symptoms and the diseases, while approximate matching helps
to take into account symptoms that might have not surfaced yet,
or are linked to some other condition. A natural extension of this
use case can incorporate symptom-disease-prognosis-drugs-side-
effects interactions as captured, for example, in the patient-disease-
drug (PDD) graph [88]. Thus, effective algorithms for approximate
subgraph matching on probabilistic graphs enable better “precision
medicinal treatment” and early detection of rare diseases.

Consider also the domain of information extraction and natural
language processing for automated question answering platforms
such as IBM Watson [13] (researcher.watson.ibm.com/
researcher/view_group.php?id=2099). Large knowl-
edge graphs providing relationships between entities and concepts
form the backbone of such systems. However, automated extrac-
tion of entities, facts and relations via web crawling faces chal-
lenges in terms of accuracy. For example, the Never-Ending Lan-
guage Learning (NELL) project [66, 67], while learning continu-
ously and incrementally, extracts facts from the Web to populate
its created ontology. The dataset is created in a semi-supervised
setting and contains millions of beliefs. Each belief triple thus
learned automatically has a score associated with it that indicates
the system’s confidence that it is correct (rtw.ml.cmu.edu/
rtw). Each belief is modeled as an edge in the graph with the
confidence score captured by the probability of the existence of the
edge between the corresponding pair of entities. Answering natu-
ral language understanding based questions (like in Jeopardy [13])
then involves finding the closest matching subgraph with the high-
est possible probability of truthfulness and existence of facts. Such
a large graph (NELL contains 50 million beliefs) poses the need to
be efficiently queried for the user to be able to effectively extract
relevant information. Since a query in general retrieves multiple
answers, it is further important to rank them. However, the prob-
abilistic nature of the graph makes it challenging for deterministic
approaches to determine which result is better and, hence, methods
that work directly with probabilistic graphs are preferable.

Probabilistic graph querying is also used regularly in biology.
For example, protein-protein interaction networks have been mod-
eled as stochastic graphs, where statistical significance measures
have been used for motif discovery [41]. We show case this sce-
nario using actual real life queries in Section 5.7.

1.2 Problem Definition
We consider uncertain graphs, where vertices are associated with

labels denoting attributes and edges are characterized by their ex-

1655

researcher.watson.ibm.com/researcher/view_group.php?id=2099
researcher.watson.ibm.com/researcher/view_group.php?id=2099
rtw.ml.cmu.edu/rtw
rtw.ml.cmu.edu/rtw

istential probabilities. Formally, without loss of generality, we rep-
resent an input graph as G = (V,E,L,P) where V is the set of
vertices and E is the set of edges. The vertex labels L : V →
strings is a mapping of vertices to labels drawn from a finite set
L = {l1, l2, · · · lL} of cardinality L. The mapping P : E → [0, 1]
is defined on the set of edges to obtain the associated probability
of existence for each edge. We assume that G is undirected and
does not contain any hyper-edge. The query graph, represented by
Q = (VQ, EQ,LQ), specifies the structure and the labels on the
vertices. Since users generally specify a query completely, there
is no uncertainty in the edges. Without loss of generality, L is as-
sumed to include the query labels, L ⊇ LQ. (Applications with
other kinds of probabilistic graphs are discussed in Section 4.)

Given a deterministic query Q and a large probabilistic graph
G as above, the problem of approximate similar subgraph match-
ing (ASSM) aims to find the best matching subgraphs in G that are
similar to Q. Observe that multiple instances of such approximate
query graph matching might occur in different parts of the input
graph. The top-k results extracted should then be ordered based on
their degree of similarity and probability of existence in accordance
with the possible world semantics (PWS) concept.

Formally, given a graph G with labeled vertices and probabilis-
tic edges and a deterministic query graph Q, our aim is to find the
top-k statistically significant subgraphs of G that are the best ap-
proximate matches of Q.

1.3 Contributions
In this paper, we propose the Chi-Square based Search in Large

ProbabiListic Graphs (CHISEL) algorithm to efficiently solve the
above approximate subgraph matching (ASSM) problem for large
probabilistic graphs. The working of CHISEL hinges on the com-
putation of statistical significance scores encoding the degree of
similarity of subgraphs in the input graph to the query graph. The
underlying principle is that regions in G demonstrating a higher
match with Q would be characterized by higher statistical signifi-
cance scores as the matching cannot be attributed to random chances
alone. This provides an efficient searching mechanism for CHISEL.

In a nutshell, our contributions in this paper are:
1. A novel subgraph matching algorithmic framework, based on

statistical significance measures, for effectively handling large
probabilistic graphs adhering to the possible world semantics;

2. The CHISEL algorithmic framework for efficient approximate
subgraph matching on labeled input and query graphs;

3. Extensive experimental evaluation showcasing the enhanced per-
formance of our algorithm, both in terms of run-time and accu-
racy, over state-of-the-art graph querying approaches on real-
life graphs; and

4. Techniques on how various scenarios of uncertainty in graph
structures and attributes can be adapted within our algorithm.

2. RELATED WORK

2.1 Deterministic Graph Matching
Graph and subgraph matching provide fundamental primitives

for applications pertaining to graph analytics and pattern mining
in network structures [18]. Classical studies in this domain in-
clude tree-pruning [86], Swift-Index [77] and VF2 [20]. Since
they depend majorly on backtracking and tree-search algorithms,
they are computationally costly for large modern-day graphs. Us-
ing a set of feasibility rules defined in [20] for structural match,
the VF2++ algorithm [44] improves over VF2. In [55], tree search
method for isomorphism is sped up by another heuristic derived
from constraint satisfaction. The NP-completeness of subgraph

isomorphism [19] led to efforts towards graph edit distance (GED)
measures for exact matches; however, optimal solution for GED
was shown to be NP-hard [99]. These approaches used state space
representation and feasibility rules for graph isomorphism.

Shang et al. [77] proposed QuickSI for testing, and Swift-Index
for filtering using prefix tree indexing. Most methods that target
biological networks, such as PathBlast [46], SAGA [81], NetAl-
ign [61] and IsoRank [78], work mostly for small networks. Tsai
and Fu [85] proposed an ordered-search algorithm for determining
error-correcting isomorphism and pattern classification combining
both structural and statistical techniques. GraphGrep [32], a graph
querying algorithm, uses hash-based fingerprinting for subsequent
filtering. Such filtering-and-verification based approaches worked
with threshold-based distance computation, identifying common
substructures, and candidate fragment computation. Identifying
graphs in a graph database containing a query subgraph have also
been studied [80]. However, our target applications require the
identification of the precise locations in the graph(s) where the best
match of the query is found.

In general, such methods involved only exact subgraph match-
ing, whereas this work involves approximate matching to extract
the best matching subgraphs.

2.2 Approximate Graph Matching
Subsequently, research in subgraph matching has mostly focused

on approximate subgraph similarity matches [3], wherein a small
amount of mis-match is tolerable. An efficient index-based approx-
imate subgraph matching tool, TALE [82], uses maximum weighted
bipartite graph matching. Different heuristics based on predefined
graph distance and radius thresholds [101], set cover (SIGMA) [68],
edge edit-distance (SAPPER) [102], regular expressions [9], etc.
have been proposed. APGM [39] proposes a method to mine useful
patterns from noisy graph databases. C-Tree [106] proposes a gen-
eralized representation of graphs that can be used for both subgraph
querying and subgraph similarity computation. However, these
methods are computationally quite expensive and are, hence, in-
feasible for modern web-scale graphs. Our proposed method based
on statistical significance is considerably faster.

A semantic-based search algorithm using a sequencing method
to capture the semantics of the underlying graph data was proposed
in GString [40]. S4 system [92] finds the subgraphs with identi-
cal structure and semantically similar entities of query subgraph.
Other relevant works in the subgraph matching domain are gIn-
dex [90], FG-Index [16], iGraph [36], Grafil [91], Gcoding [105],
GPTree [100], and cIndex [14]. An extensive survey about graph
matching algorithms was presented in [18]. Random walks to find
the best matching in large graphs were used in [83, 84]. Sub-
graph matching considering the similarity between objects associ-
ated with two matching vertices [104], and a maximum likelihood
estimation approach [4] were also proposed.

Recent approaches [5, 27] employ statistical analysis methods to
find statistically significant subgraph matches that deviate from the
expected subgraph pattern significantly. Dutta et al. [27] improve
upon NeMa [48] and SIM-T [51] approaches based on neighbor-
hood search. A concise description and comparison of various tech-
niques available for graph matching in large graphs is given by [63].
An interesting survey of existing graph-based structural and pattern
matching approaches across diverse applications such as computer
vision, biology, networks, etc., has been presented in [29].

These approaches consider deterministic graphs and are difficult
to generalize for probabilistic setting wherein varying types of un-
certainties might be present. The closest approach to our work in
terms of using statistical significance is [27].

1656

Another similar domain of work involves frequent subgraph find-
ing and pattern mining over a set of graphs or a single large graph.
FSD [52] uses sparse graph representation for candidate generation
and counting. gSpan [89] uses a canonical labeling system, sup-
porting depth-first search, to find frequently occurring subgraphs.
Similar works include GREW [53], mining proximity pattern [49],
and frequent patterns in large sparse graphs [54]. A frequent pat-
tern or decomposition approach is also often employed for struc-
tural match, as described in [65]. The aim of this contribution,
approximate subgraph matching, is, however, orthogonal to these.

2.3 Probabilistic Graph Matching
Recently, with the advent of uncertain and probabilistic graphs

such as knowledge graphs, RDF stores, etc., algorithms for prob-
abilistic graph querying are being studied. Initially, convex op-
timization methods were proposed [37]. However, they found it
difficult to handle large and noisy real-life graphs.

Inexact graph matching for uncertain graphs majorly comprises
a three-phase framework: structural pruning, probabilistic prun-
ing and verification. Often the uncertainty information in the graph
is ignored and candidate answers are searched using conventional
structural pruning algorithms, followed by probabilistic pruning of
candidates and verification of the answer candidates. Utilizing this
framework, [95, 96] compute tight probabilistic bounds for pruning
of approximate subgraph matching based on threshold for uncertain
graphs with local correlations and adhering to the possible world
semantics. Efficient upper and lower bounds were computed for re-
laxed query graphs by transforming the problem to set cover and in-
teger quadratic programming problems in [96]. Additionally, [94]
constructs an optimal probabilistic index based on edge-cuts of tar-
get graph to compute an upper bound on pattern matching proba-
bility for pruning. The above filter-and-search framework performs
well in subgraph matching. On arrival of a query, it retrieves and
sorts the promising positions in the underlying deterministic graph
with the help of index structures incorporating PWS, and verifies
the results by checking for subgraph isomorphism. However, given
a database of probabilistic graphs, it only returns graphs that con-
tain the entire query subgraph, and does not report the exact lo-
cation of the query subgraph. Hence, we do not consider these
approaches as baselines in our experiments. Although CHISEL
creates a similar index on semantics (label) of a node, the use of
statistical significance measure provides a more accurate rendition
of both the structural similarity and the possible world semantics.

The direct approach described in [33] extends TreeSpan by ef-
ficient incremental similarity computation mechanism intertwined
with structural pruning, with no attention to uncertainty informa-
tion. Sampling has been shown to be effective in dealing with
the hardness of managing and mining uncertain graphs [56]. The
performance of sampling-based approaches depend heavily on the
samples considered, though. Weighted subgraph matching algo-
rithms were considered using the probability values as weights [38,
47]. However, such techniques were unable to handle the various
uncertain scenarios that CHISEL can take into account.

Hua et al. [38] proposed three novel types of probabilistic path
queries using basic principles. For probabilistic graph settings, a
host of diverse problems such as frequent subgraph mining [15, 58,
70, 107], clustering [50], reliable subgraphs [62], shortest-path [38],
and maximum flow [35] have been actively worked upon. Potamias
et al. [72] studied k-nearest neighbor queries over uncertain graphs,
and propose sampling algorithms for tackling #P-completeness of
reachability problems. Lian et al. [59] proposed customization
over existing tree-indexing strategies based on uncertain graph de-
composition for k-NN queries. Reverse k-NN queries for uncer-

tain graphs were studied in [31]. Approximate subgraph matching
queries on fuzzy RDF graphs using path decomposition was re-
cently shown to be efficient [22, 57]. A systematic introduction
to the topic of managing and mining uncertain data can be found
in [97], while [45] provides a detailed overview of state-of-the-art
methods on uncertain graph mining. Such path decomposition-
based similarity techniques have been shown to be effective and,
hence, we compare the empirical performance of CHISEL with
them in Section 5. Interestingly, the neighborhood search step in
CHISEL can be considered to be similar to such path-based ap-
proaches taking into account the structure around a vertex.

2.4 Statistical Significance
Statistical models and measures involve establishing a relation

between the empirical or observed results of an experiment with
factors affecting the system or to pure chance. In such scenarios, an
observation is deemed to be statistically significant if its presence
cannot be attributed to randomness alone. The classical p-value
computes the chance of rejecting the null hypothesis, i.e., the ob-
servation is drawn from a known probability model characterizing
the experimental setup. In other words, the less the p-value, the less
likely it is that the null hypothesis is true. However, the computa-
tion of p-value is generally computationally infeasible since it en-
tails the generation of all possible outcomes. To alleviate this prob-
lem various branch-and-bound methods have been studied [10]. In
systems where such accuracy in measurement is not a necessity
and a small factor of error can be tolerated, an approximation of
the p-value can be calculated using other statistical measures. The
literature hosts a number of statistical models to capture the unique-
ness of observations, including z-score, log-likelihood ratio (G2),
and Hotelling’s T 2 measure [74].

The chi-square distribution (χ2) is widely used to compute the
goodness-of-fit of a set of observations to the theoretical model de-
scribing the null hypothesis. In most situations, the chi-square dis-
tribution provides a good approximation to the p-value [73]. In this
paper, we consider statistical significance using the Pearson’s χ2

measure based on the chi-square distribution, which uses the fre-
quency of occurrences of outcomes to test the fit of a model with
the set of theoretical frequencies of the events, where the events are
assumed to be mutually exclusive and independent.

The use of p-value for motif discovery in biological stochastic
networks was studied in [41]. The use of χ2 statistical measure has
been shown to perform well in diverse applications such as signif-
icant substring [24, 25, 76] and connected subgraph extraction [5]
for anomaly detection, substring similarity search [23], and max-
imum clique finding [26]. Hence, in this work, we also use the
chi-square measure since it is efficient and reasonably accurate.

3. THE CHISEL ALGORITHM
In this section, we describe the working of our proposed CHISEL

algorithm. As defined previously in Section 1, we denote the in-
put target probabilistic graph by G = (V,E,L,P), and the query
graph by Q = (VQ, EQ,LQ). Without loss of generality, we as-
sume that G is simple and undirected (containing no hyper-edges)
with edge probabilities, and since users generally specify a query
accurately, there is no uncertainty in the edges of Q. We handle all
other special cases that depart from the above model in Section 4.
Figure 1 provides sample graphs G and Q as a running example.

3.1 Overview
The CHISEL algorithm has two distinct phases, namely, the in-

dexing and the querying phases. In the indexing phase, several in-
verted index lists for mapping between vertices, labels, and neigh-

1657

Table 1: Computing observed values of symbols s0, s1 and s2 for vertex pair 〈v1,q1〉 for the example in Figure 1.

Possible
worlds

Neighbors of v1(A)
P(Wx)

Best matches for query triplets of q1(A) and symbols
v2(B) v3(C) v4(A) 〈B,A,C〉 Sym. 〈C,A,D〉 Sym. 〈B,A,D〉 Sym.

W0 0 0 0 0.7× 0.6× 0.8 = 0.024 〈φ,A, φ 〉 s0 〈φ,A, φ 〉 s0 〈φ,A, φ 〉 s0
W1 0 0 1 0.7× 0.6× 0.8 = 0.096 〈φ,A, φ〉 s0 〈φ,A, φ〉 s0 〈φ,A, φ〉 s0
W2 0 1 0 0.7× 0.6× 0.8 = 0.036 〈C,A, φ〉 s1 〈C,A, φ〉 s1 〈φ,A, φ〉 s0
W3 0 1 1 0.7× 0.6× 0.8 = 0.144 〈C,A, φ〉 s1 〈C,A, φ〉 s1 〈φ,A, φ〉 s0
W4 1 0 0 0.7× 0.6× 0.8 = 0.056 〈B,A, φ〉 s1 〈φ,A, φ〉 s0 〈B,A, φ〉 s1
W5 1 0 1 0.7× 0.6× 0.8 = 0.224 〈B,A, φ〉 s1 〈φ,A, φ〉 s0 〈B,A, φ〉 s1
W6 1 1 0 0.7× 0.6× 0.8 = 0.084 〈B,A,C〉 s2 〈C,A, φ〉 s1 〈B,A, φ〉 s1
W7 1 1 1 0.7× 0.6× 0.8 = 0.336 〈B,A,C〉 s2 〈C,A, φ〉 s1 〈B,A, φ〉 s1

Distribution of [s0, s1, s2] for each query triplet [0.12,0.46,0.42] [0.40,0.60,0.00] [0.30,0.70,0.00]

v1,A
v2,B

v3,C
v4,A

Vertex Label Neighbors
 v1 A (A,0.8), (B,0.7), (C,0.6)
 v2 B (A,0.7), (A,0.5), (C,0.4)
 v3 C (A,0.6), (A,0.3), (B,0.4)
 v4 A (A,0.8), (B,0.5), (C,0.3)

Vertex Label Neighbors Triplet-list
 q1 A B,C,D (C,A,E), (B,A,C), (B,A,D)
 q2 B A,C (A,B,C)
 q3 C A,B (B,C,A)
 q4 D A (A,A,ϕ)

q1,A

q4,D

q2,B q3,C

G

Q

0.8

0.7

0.4

0.3

0.5

0.6

Figure 1: Running example of a subgraph matching query Q
for the input probabilistic graph G.

bors are constructed. Observe that this phase is a one-time pre-
processing step for an input graph (to boost the performance of
querying later) and is independent of the query (i.e., performed
even before the queries arrive). The querying phase is initiated
when a query arrives, and the index structures are then used to ef-
ficiently compute statistical significance scores to guide the search
process for finding the best matching subgraph. We next describe
in detail the working of the two phases in CHISEL.

3.2 Indexing Phase
In the offline indexing phase, CHISEL constructs several indexes

to store vertex and neighborhood information from the input target
graph G. Specifically, we construct the following.

3.2.1 Vertex-Label Inverted Index
The vertex-label inverted index stores the mapping between the

labels and the vertices of the input graph, G. Here, the labels
present in L are considered to be keys, while the vertices associ-
ated with those labels form the values.

3.2.2 Neighbor Labels List
For each vertex in G, CHISEL stores the neighboring vertices

along with their labels and the corresponding edge existential prob-
abilities by using an adjacency list structure. Figure 1 depicts the
construction of the above indexes for our example graphs.

3.2.3 Expected Degree Computation
Since the graph is probabilistic, the existence of neighbors of

a vertex is uncertain. Assuming that the existence of each edge
is an independent event, the expected degree of a vertex is com-
puted as the sum of probabilities of edges incident on it. Thus,

if a vertex v has nv neighbors connected with edges with proba-
bilities p1, p2, · · · , pnv , the expected degree, δv , of v is given by
δv = E [deg(v)] =

∑nv
i=1 pi.

We prove this by induction. Assume the base case where there
is only one neighbor with probability p1. The expected number of
neighbors, therefore, is δ = p1 × 1 + (1− p1)× 0 = p1. Assume
that for n − 1 neighbors, the expected degree is δ =

∑n−1
i=1 pi. If

another vertex with edge probability pn is added, then with prob-
ability pn, the number of neighbors is δ + 1, while with proba-
bility 1 − pn, it remains δ. Hence, the new expected degree is
δ′ = pn × (δ + 1) + (1− pn)× δ = pn + δ =

∑n
i=1 pi.

Hence, the expected degree of vertex v1 in the example of Fig-
ure 1 is δv1 = 0.8 + 0.7 + 0.6 = 2.1.

3.2.4 Neighbor Label Probabilities
For each vertex in G, we also compute the probability that a par-

ticular label would occur in its neighborhood. This is used during
the querying phase and, hence, CHISEL performs the computation
during the offline pre-processing phase for faster querying.

Consider vertex v to have nv neighbors with corresponding la-
bels l1, l2, · · · , lnv , each connected by edges with existential prob-
abilities p1, p2, · · · , pnv respectively. Note that vertex labels may
not be unique and may repeat.

Assume label lj to be associated with ψ neighbors of v, which
are connected via edges with probabilities plj1 , p

lj
2 , · · · , p

lj
ψ . The

event that no instance of label lj is present in the neighborhood of
v occurs when none of these vertices are neighbors of v, i.e., these
edges do not exist. Denoting the number of instances of label lj in
the neighborhood by #lj , the probability of this event is

P (#lj = 0) = (1− plj1)× · · · × (1− pljψ) =

ψ∏
i=1

p̄
lj
i (1)

where p̄lji denotes the probability of the edge between the ith neigh-
bor and v not existing. Using the above equation, the probability
that label lj occurs at least once in the neighborhood of v is,

P (#lj ≥ 1) = 1− P (#lj = 0) (2)

Similarly, the probability that label lj occurs exactly once in the
neighborhood of v is given by

P (#lj = 1) =

ψ∑
i=1

[
p
lj
i ·
∏
ι 6=i

p̄
lj
ι

]
= P (#lj = 0) ·

ψ∑
i=1

p
lj
i

p̄
lj
i

(3)

If there is no neighbor of v with the label lj , then it cannot occur
in the neighborhood of v and, consequently, P (#lj = 0) = 1 and
P (#lj ≥ 1) = P (#lj = 1) = 0.

The occurrence probabilities of labels in the neighborhood of a
vertex is computed using equations (1)-(3) during pre-processing.

1658

3.3 Querying Phase
After the indexing phase is completed, the querying phase com-

mences on arrival of a query graph Q = (VQ, EQ,LQ). We next
describe the details of the steps involved in this phase.

3.3.1 Inverted Lists and Neighborhood Information
Similar to the input target graph G, as described in Section 3.2,

the vertex-label inverted index and neighbor label list structures are
computed forQ as well. Since query graphs are generally relatively
small in size (in the order of tens of vertices), this step is fast.

3.3.2 Vertex Pair Generation
The querying phase proceeds by constructing similar matching

vertex pairs between graphs G and Q. Specifically, a vertex pair,
〈v, q〉, is constructed with vertex v ∈ V and q ∈ VQ having the
same label, i.e., lv = lq , where lv and lq denote the labels of ver-
tices v and q respectively. Given a query vertex q, such vertex pairs
can be easily formed by using the vertex-label inverted index struc-
ture of G. Formally, the entire vertex pair set for query Q is

VP = {〈v, q〉 | v ∈ V, q ∈ VQ, lv = lq} (4)

The vertex pair set for the example in Figure 1 is {〈v1, q1〉, 〈v2, q2〉,
〈v3, q3〉, 〈v4, q1〉}.

Vertex pairs play an important role in pruning the search space,
by providing initial seeds for neighborhood exploration for finding
matching subgraph. The CHISEL framework works on the com-
putation of statistical significance scores of these vertex pairs to
obtain the top-k potential candidate regions in G for extracting the
best (approximate) matching subgraph to Q. The next section ex-
plains how the χ2-value of a vertex pair is computed.

3.4 Vertex Pair Chi-Square Computation

3.4.1 Label Triplet Generation
For each query vertex q, CHISEL initially constructs triplets of

vertices 〈x, q, y〉 where x and y are the neighboring vertices of q in
Q. The corresponding label triplet, 〈lx, lq, ly〉, is computed, where
lx, lq , and ly denote the labels of the vertices x, q and y respec-
tively in Q. The neighbors are considered to be symmetric, i.e.,
〈lx, lq, ly〉 is equivalent to 〈ly, lq, lx〉. Therefore, without loss of
generality, we order the labels in a label triplet alphabetically.

Considering vertex v ∈ G that forms the vertex pair 〈v, q〉 with
q, similar neighbor triplets 〈u, v, w〉 and their corresponding label
triplets 〈lu, lv, lw〉 of v are extracted.

3.4.2 Triplet Pair Matching
For the vertex pair 〈v, q〉, CHISEL next characterizes the simi-

larity between the label triplets obtained from the vertices v and q.
By definition of vertex pair construction, we have lq = lv . How-
ever, the other two neighboring vertex labels (in the triplets) may
or may not match. Based on the degree of label matching between
the obtained label triplets (of a vertex pair), i.e., label triplet pairs
〈lx, lq, ly〉 and 〈lu, lv, lw〉, the triplet pair similarity is character-
ized into three different classes, as:
• s2: When both the neighboring labels in the triplets match.

s2 : (lx = lu ∧ ly = lw) (5)

• s1: When only one of the neighboring triplet labels match.

s1 : ((lx = lu ∧ ly 6= lw) ∨ (lx 6= lu ∧ ly = lw)) (6)

• s0: When none of the neighboring labels match.

s0 : (lx 6= lu ∧ ly 6= lw) (7)

Since a vertex in the target graph have neighbors connected by
probabilistic edges, it will have varying number of triplets in the
different “possible worlds”. We next explain how the above triplet
pair matching assigns symbols in this probabilistic setting.

3.4.3 Possible Worlds
We adopt the possible world semantics (PWS) graph uncertainty

model, where each vertex v with d neighbors is connected by edges
with probabilities of existence. The existence of edges are con-
sidered to be independent of each other. Thus, in each possible
world, either an edge exists or it does not exist. There are 2d pos-
sible worlds, and each such possible world occurs with a particular
probability (as shown in Table 1).

3.4.4 Observed Match Symbol Vector
Assume vertices t1, t2, · · · , td to be the neighbors of vertex v,

with corresponding labels l1, l2, · · · , ld respectively. Consider a
particular possible world Wi where edges to neighbors t1, t2, . . . ,
tw exist but those to tw+1, tw+2, · · · , td do not exist, for some
1 ≤ w ≤ d. The probability of world Wi is, thus,

P (Wi) = p1 × · · · × pw × p̄w+1 × · · · × p̄d (8)

The vertex triplets of v that exist in Wi are Ti = {〈l1, lv, l2〉,
〈l1, lv, l3〉, · · · , 〈lw−1, lv, lw〉}.

Assuming the vertex pair 〈v, q〉, the query triplet 〈lx, lq, ly〉 is
now matched with all the possible triplets in Ti. The matching of
a query triplet is considered to be the one that produces the best
scenario, i.e., where there are more triplet label matches. The order
of preference of match classes (or symbols) is, thus, s2 � s1 � s0.

For each possible worldWi, a match symbol sj (either s2, s1, or
s0) is, hence, associated with the query triplet, denoted as sj�Wi.
The overall probability of a particular match symbol is the sum of
probabilities of the possible worlds to which it gets associated:

P (sj) =
∑

∀Wi, sj�Wi

P (Wi) (9)

Thus, corresponding to each query triplet, and a vertex pair, there
is a probability distribution of the symbols s2, s1 and s0. This
forms the observed counts for the match symbols that implicitly in-
corporate the PWS concept based on the different possible worlds.

Based on the above formulation, Table 1 shows the observed
symbol vectors for query triplets corresponding to the vertex pair
〈v1, q1〉 with label A. Since v1 has 3 neighbors, the number of
possible worlds is 23 = 8. They are denoted by W0, . . . ,W7.

Consider the possible worldW1 where only neighbor v4 with la-
bel A occurs but neighbors v2 and v3 do not occur. The probability
of this world is P (W1) = (1 − 0.7) × (1 − 0.6) × 0.8 = 0.096.
The label triplets around v1 are 〈A,A, φ〉 and 〈φ,A, φ〉 where φ
is a dummy label that is used when at most one neighbor label ex-
ists. Comparing any label with φ, including φ itself results in a
mis-match. For the query triplet 〈B,A,C〉, the best match, there-
fore, is 〈φ,A, φ〉. Since none of the neighbors match, this results
in the symbol s0. Similarly, for the world W2, the query triplet
〈B,A,C〉 is best matched with the vertex triplet 〈C,A, φ〉 yield-
ing the symbol s1. In the world W7, the possible vertex triplets
are 〈A,A,B〉, 〈A,A,C〉 and 〈B,A,C〉. The highest match corre-
sponds to 〈B,A,C〉 and it yields the symbol s2. Thus, the world
W7 contributes to the symbol s2.

Adding up the probabilities of the worlds in which the symbols
occur, the observed symbol vector for the query triplet 〈B,A,C〉
is [0.12, 0.46, 0.42]. Since the probabilities of the possible worlds
add up to 1, so do the probabilities of the symbols.

1659

3.4.5 Multiple Query Triplets
When there are multiple query triplets corresponding to a vertex

pair, the observed counts of the match symbols are added to form
the cumulative observed count vector, O, for the vertex pair. In Ta-
ble 1, considering all the 3 query triplets pertaining to q1, the cumu-
lative observed symbol vector obtained is O = [0.82, 1.76, 0.42].

CHISEL considers the matching symbols of each of the query
triplets to find the best matching subgraph.

3.4.6 Efficiently Computing Observed Vectors
However, in the above process of computing the cumulative ob-

served count vectors, enumerating all the possible worlds is com-
putationally inefficient. For some vertices with large degrees, it
is practically infeasible. Fortunately, since we are only concerned
with the presence or absence of relevant neighbor vertex labels in
the worlds, CHISEL efficiently computes the observed symbol vec-
tors based on the probabilities obtained in the indexing phase.

Consider a query triplet 〈lx, lq, ly〉 and a corresponding vertex v
in G with label lv = lq . The vertex v can have multiple neighbors
with label lx (or ly). Equation (1) to Equation (3) in Section 3.2.4
give the probabilities of lx (or ly) occurring various number of
times in the neighborhood.

We first consider the case when lx 6= ly . The symbol s2 occurs
in those worlds where both the labels lx and ly occur at least once.
The occurrence of such an event has the probability

O[s2] = P (#lx ≥ 1)× P (#ly ≥ 1) [using Eq. (2)] (10)

Similarly, symbol s0 occurs when none of the instances of the la-
bels lx and ly occur:

O[s0] = P (#lx = 0)× P (#ly = 0) [using Eq. (1)] (11)

Since the probability of the match symbols add up to 1,

O[s1] = 1−O[s2]−O[s1] [using Eq. (10) and (11)] (12)

We next consider the case when lx = ly . The symbol s0 occurs
in those worlds where no instance of label lx occurs:

O[s0] = P (#lx = 0) [using Eq. (1)] (13)

Similarly, symbol s1 occurs when exactly one instance of lx occurs:

O[s1] = P (#lx = 1) [using Eq. (3)] (14)

Consequently,

O[s2] = 1−O[s0]−O[s1] [using Eq. (13) and (14)] (15)

The above computation avoids the exponential enumeration of
the possible worlds and is only linear in terms of number of neigh-
bors of a vertex. More importantly, equations (1)-(3) are computed
in the offline phase before any query arrives. The querying phase
only uses the information and is, therefore, very fast in practice.

3.4.7 Expected Symbol Vector for Triplet Match
The chi-square statistic computes the deviation of the observa-

tions from the expectations. The expected count of triplet match
symbols for a vertex triplet is computed as follows.

Suppose the input target graph containsL labels that are assumed
to be equally likely in terms of occurrence. Consider a vertex v
with expected degree δ (as computed in Section 3.2.3). The chance
that a neighbor of v has a particular label lx is 1/L. Therefore,
the chance that none of the neighbors of v has label lx is given by
(1− 1/L)δ .

Now, considering a label triplet of v, if the highest match symbol
(to a query label triplet) is s0, then none of the triplets have label

lx. Since there are two neighboring vertices in a triplet, assuming
independence of labels, the probability of the event s0 is

P (s0) =
(

(1− 1/L)δ
)2

(16)

The chance that there is at least one neighbor with label lx is
1 − (1 − 1/L)δ . Thus, the probability that v has a triplet where
both the neighboring vertices match is given by

P (s2) =
(

1− (1− 1/L)δ
)2

(17)

The event s1 occurs when there is one vertex in a triplet that matches
a label while the other does not. Since there are two ways of enu-
merating vertices in a triplet, the probability of the event s1 is

P (s1) = 2 · (1− 1/L)δ ·
(

1− (1− 1/L)δ
)

(18)

Observe that the match symbols are mutually exhaustive, i.e., the
probabilities add up to 1. If a query has len triplets, the expected
counts of the match symbols (i = 0, 1, 2) are

Ei = len · P (si) (19)

The expected counts of the match symbols are represented as a
vector, referred to as the expected symbol vector. Importantly, the
calculation of the above probabilities is independent of the query.
Hence, they are actually done in the offline pre-processing phase of
CHISEL, contributing to the efficiency of the querying phase.

The vertex v1 in Figure 1, as shown earlier in Section 3.2.3, has
an expected degree of 2.1. Assume the total number of labels in L
to be L = 4. Hence, P (s0) = ((1 − 1/4)2.1)2 = 0.30, P (s1) =
0.49, and P (s2) = 0.21. Thus, the expected symbol vector for
the vertex pair 〈v1, q1〉 having three query triplets is computed as
E = 3 · [0.30, 0.49, 0.21] = [0.90, 1.47, 0.63].

3.4.8 Chi-Square of a Vertex Pair
Using the observed symbol vector and the expected symbol vec-

tor as computed above, CHISEL finally computes the chi-square
value, χ2

〈v,q〉, of each candidate vertex pair 〈v, q〉 as:

χ2
〈v,q〉 =

2∑
i=0

(O[si]− E[si])
2

E[si]
(20)

In the example in Figure 1, the chi-square of the vertex pair 〈v1, q1〉
is χ2
〈v1,q1〉 = (0.82−0.90)2

0.90
+ (1.76−1.47)2

1.47
+ (0.42−0.63)2

0.63
= 0.13.

3.5 Top-k Subgraph Search
CHISEL next computes the χ2 scores for each of the vertex pairs

obtained from the query Q. The best candidate regions for sub-
graph matching are then explored to obtain the final answer by use
of two heap structures as discussed next.

3.5.1 Primary Heap
All the vertex pairs along with their χ2 values are inserted into

a max-priority heap called the primary heap. To compute the sim-
ilarity for subgraph matching, vertex pairs are picked up from the
primary heap in the priority order, i.e., the one with the largest chi-
square score is picked first, and so on, to form the seed of the neigh-
borhood search process. A vertex that has been matched earlier is
not picked up any further. This ensures that the subgraphs returned
are disjoint. This is done to avoid duplicate answers.

3.5.2 Secondary Heap
For each vertex pair picked from the primary heap, its neighbor-

hood is searched to see if the query subgraph can be completed.

1660

Suppose, 〈v, q〉 is chosen. The neighbors of vertices v and q that
share the same label (i.e., form a vertex pair themselves) are ex-
tracted, constructed into a vertex pair, and inserted into another
priority-max heap, referred to as the secondary heap.

Assume a neighbor vertex pair 〈nv, nq〉. In addition to its chi-
square value, χ2

〈nv,nq〉, the probability, p(v, nv), of the edge con-
necting v to nv is also inserted in the secondary heap. The neighbor
vertex pair having the maximum value of p(v, nv)·χ2

〈nv,nq〉 is then
picked and the neighborhood search continues using this as the new
seed. The edge probability is used along with the chi-square so that
more probable edges are preferred.

3.5.3 Top-k Search
The growth of the neighborhood continues till the query is com-

pletely matched or the subgraph in the target graph cannot grow
any further due to lack of matching vertex pairs.

The above process is initiated k times to find the top-k matching
subgraphs. The subgraphs are constrained to be disjoint from each
other, by marking vertex pairs as “visited” in both the heaps.

3.6 Summation of Chi-Square Values
For every matching vertex pair of a query, the chi-square value

follows the χ2 distribution with 2 degrees of freedom (since there
are 3 possible match symbols). The χ2 values for the vertices of a
matching subgraph are added to produce the total chi-square statis-
tical significance score of the match. Since addition of chi-square
distributions results in another chi-square distribution [34], for a
query Q of size |VQ|, the total chi-square value of the matching
subgraph follows the chi-square distribution with degrees of free-
dom 2 · |VQ|. This enables approximating the p-value of the match,
if required. The top-k matching subgraphs are sorted based on their
total χ2 values.

On one hand, the observed match symbol vector models the PWS
concept by considering the match symbol (of triplets) across all the
“possible” worlds. On the other hand, the χ2 computation and the
greedy neighborhood search takes into account the structural and
label match. Thus, our proposed framework provides an integrated
measure to obtain the best approximate subgraph matches.

3.7 Complexity Analysis
Assume thatG has n vertices andm edges whileQ has q vertices

and p edges. Building the query graph indexes require O(p), while
creating the vertex pairs VP require at most n · q = O(n) time,
since p and q are small and considered to be constants in practice.
For each vertex pair in VP , computing the expected vector requires
O(1) time, while that for the observed vector requires O(dv) time,
where dv is the degree of vertex v. The complexity of the above
operations for all vertex pairs is approximately O(m).

Considering m ≤ n2, the average degree of vertices in G is
a = 2m/n ∼ O(n). The size of the primary heap is bounded
by O(n). For a vertex in the primary heap, the secondary heap
is initially populated by O(a) neighboring vertex pairs. Subse-
quently, the best candidate from the secondary heap is extracted and
its O(a) neighboring vertex pairs are added to the heap. Observe,
at most q such iterations are performed on the secondary heap to
extract the matching subgraph, providing a total time complexity
of O(q · a) ∼ O(n) for the heap operations. Hence, for top-k sub-
graph matches, the time complexity of CHISEL is O(m+ k · n).

The size of the primary heap isO(n), while each secondary heap
can grow to a maximum of another O(a) ∼ O(n) neighbors. The
extra space overhead, hence, is at most O(n).

Empirical evaluation, however, shows that the sizes of primary
and secondary heaps are mostly small constants in general.

4. SPECIAL CASES OF UNCERTAINTY
We have so far described CHISEL for vertex labeled probabilis-

tic graphs where the uncertainty is only in the existence of edges.
In this section, we briefly outline how other cases of uncertainty
and noise can be handled within our framework.

4.1 Edge Labels
If, in addition to vertices, edges are also labeled, then for a ver-

tex to match, the corresponding edge labels also need to match. To
handle this easily, for a neighboring vertex, we prepend the corre-
sponding edge label to the vertex label of the neighbor. This en-
sures that the edge labels are also taken into account during triplet
matching and symbol generation.

4.2 Uncertain Vertices
Consider the vertices in the target input graph to be also uncer-

tain, i.e., each vertex exists with a probability. This scenario can
be handled in our current model by absorbing the vertex proba-
bilities into the probabilities of the edges incident on it. Thus,
if vertices u, v, w exist with probabilities pu, pv, pw respectively,
and the edges e1 = (u, v), e2 = (w, v) exist with probabilities
p1, p2 respectively, then the graph can be appropriately modified
such that the edge probabilities are updated to p′1 = p1 · pu · pv
and p′2 = p2 · pw · pv . The vertices are then no longer treated as
uncertain, and the rest of the framework remains same.

4.3 Noisy Labels
For scenarios where the labels in the vertices might be noisy

(e.g., mis-spelled), similarity measures such as Jaccard similarity
can be used for matching purposes. For example, vertex labels hav-
ing a Jaccard similarity score greater than a pre-defined threshold
will be considered to be a match. Also, semantic similarity of the
vertex labels can be considered in such cases.

4.4 Label Uncertainty
The label of a vertex or an edge might also be uncertain, that is,

there exists a probability distribution over a set of labels for each
vertex or edge. For example, suppose vertex v has label l1v with
probability 0.6 and label l2v with probability 0.4. Given a query
vertex q with label lq , a suitable distance function (such as Jensen-
Shannon divergence measure) can be used to ascertain the similar-
ity between the two label distributions. Similar to noisy labels, only
if this distance is below a threshold, the vertices are said to match.

4.5 Uncertain Query Graphs
Finally, if the query graph is also uncertain in nature (this uncer-

tainty may be in edges and/or vertices and/or labels), we can adopt
deviation thresholds of probability for each uncertainty, i.e., only
candidate matches having a probability deviation from the query
vertex/edge matches within the threshold will be considered.

5. EXPERIMENTAL EVALUATION
In this section, we empirically evaluate the efficacy of our pro-

posed CHISEL algorithm, and benchmark its performance against
state-of-the-art competing algorithms on large real-life datasets.

5.1 Empirical Setup
All the algorithms were implemented in C++. The experiments

were performed on an Intel(R) Xeon(R) 2.6GHz CPU E5-2697v3
processor with 504GB RAM running CentOS Linux 7.2.1511.1

1The source code of CHISEL is available from
https://github.com/Shubhangi-Agarwal/ChiSeL.

1661

https://github.com/Shubhangi-Agarwal/ChiSeL

Table 2: Characteristics of datasets used.
Dataset # Vertices # Edges # Labels Avg. Degree

PPI-complete 7.6M 1.2B 0.2M 316
PPI-small 12.0K 10.7M 2.4K 1789

YAGO 4.3M 11.5M 4.0M 5
IMDb 3.0M 11.0M 3.0M 7

5.1.1 Datasets
We use the following datasets as our input target graphs:
• STRING DB or PPI v10.5 (version-10-5.string-db.
org): a database of known and predicted protein-protein in-
teractions created automatically by collecting information from
various sources. We extract the COG mappings of proteins and
their links. The proteins are considered as the vertex set with
the orthologous groups as their labels, and the links form the
edges. Importantly, each protein link is annotated with a con-
fidence score (from 0 to 1) that represents how likely it is that
the interaction exists. The total graph consists of around 7.6M
vertices and 1.2B edges with around 200K unique vertex labels.
This dataset is referred to as PPI-complete henceforth.
? PPI-small: We also randomly extract a smaller graph from

PPI-complete consisting of 12K vertices and 10.7M edges
with around 2.4K unique vertex labels.

• YAGO (www.yago-knowledge.org): an open source know-
ledge graph consisting of extracted entities and relations from
Wikipedia, WordNet and GeoNames. Each relationship is as-
sociated with a confidence value. It comprises of nearly 4.3M
vertices and 11.5M edges, with 4M unique labels.
• IMDb (www.imdb.com/interfaces): dataset with infor-

mation on movies, actors, directors, etc., with around 3M unique-
ly labeled vertices and 11M edges. We randomly assign edge
probabilities to model scenarios where the edge existential prob-
ability distribution is not known apriori.
Table 2 summarizes the characteristics of the various datasets.

5.1.2 Query Generation
Exact. The query graphs were constructed from each of the

above dataset by initially selecting a random vertex, and then ex-
ploring its neighborhood using a random walk till q vertices are
visited. Finally, the subgraph induced by the visited vertices is con-
sidered as the query Q. Without loss of generality, we consider the
query graphs to be connected; else, the algorithms can be indepen-
dently executed on the disjoint components.

We generated query graphs of different sizes, with the number of
vertices varying from 3 to 13, with a step size 2. For PPI-complete,
the query graph size varied from 3 to 25. The number of query
edges varied from 2 to 80. Further, for each query graph size, 20
different graphs were randomly extracted from each of the datasets.
We refer to this set of query graphs as exact queries.

Noisy. To study the performance of the algorithms in presence
of noise, we further create a noisy query graph set by introducing
structural noise as follows. For each of the above exact queries
obtained, we randomly insert, delete or modify the probabilities of
some edges such that the number of edit operations is 33% of the
edges present in the exact query.

Thus, for each dataset, in general, we considered (6×20×2) =
240 queries. For PPI-complete, the number of queries were (12 ×
20 × 2) = 480. Unless otherwise mentioned, results presented
henceforth are averages over the corresponding query sets.

5.1.3 Competing Methods
Two major strategies are used in the literature: distance/error

bounded pruning approaches and tree/graph traversal based method-

Table 3: Overall performance comparison of the algorithms on
all the datasets averaged over both exact and noisy query graph
sets. (The results for PPI-complete are not shown since PBound
and Fuzzy could not be run on them. CHISEL achieves an ac-
curacy of 0.84 on PPI-complete with a running time of 0.14s.)

Method YAGO IMDb PPI-small
Acc. Time (s) Acc. Time (s) Acc. Time (s)

CHISEL 0.89 1.62 0.87 0.05 0.96 16.69
PBound 0.26 560.92 0.57 101.95 0.29 3134.09
Fuzzy 0.61 1.82 0.62 2.19 0.01 13970.94

ologies. Thus, in the same spirit, we compare the CHISEL algo-
rithm against two recent state-of-the-art methods:

(i) PBound [33], that performs maximal subgraph matching by
incrementally computing similarity probabilities, and using
probability upper bounds for pruning.

(ii) Fuzzy [57], that uses path-based graph decomposition and
k-partite based joining techniques to obtain best matching
approximate subgraph on LUBM benchmark, and has been
shown to outperform SPath [103] and SAPPER [102].

5.1.4 Parameter Setting
For the above competing methods, we performed the best effort

implementation as the original code was not available publicly or
from the authors.

We experimentally studied the performance of the baselines with
different parameter settings. Fuzzy was tested on varying edit-
distance parameter combinations from the set {0, 0.25, 0.5, 0.75,
1.0}, and different distance and probability threshold parameters
for PBound. For best performance, the parameters of PBound were
set to their default values (as reported in [33]), while in Fuzzy the
probability threshold was set to 0.1 with the insertion, deletion and
replacement costs for string edit-distance set to 1.0 each.

We set k = 10 for the number of top-k subgraphs returned in
our framework.

5.1.5 Evaluation Measures
We evaluate the quality of the matching subgraphs reported and

the performance of the algorithms using the following measures:
(i) Mean maximum accuracy – reports the average over the max-

imum accuracy of a subgraph match found, for each query,
within the top-k results reported. We define the accuracy
as the number of matching edges present in the answer sub-
graph against the number of edges required for a complete
match (i.e., edges in the query).

(ii) Runtime – compares the computation efficiency of the algo-
rithms by reporting the wall clock running times.

5.2 Overall Results
The overall performances of the algorithms on the different data-

sets are tabulated in Table 3.
PBound enumerates all minimum spanning trees and Fuzzy lists

all source-destination paths. Since these numbers are extremely
large for PPI-complete that contains more than a billion edges, none
of the queries for PBound and Fuzzy could finish within a reason-
able amount of time (1 hour) for PPI-complete. CHISEL could
easily scale to such massive graphs along with high accuracy. For
a fair evaluation of all the three algorithms, a smaller dataset, PPI-
small, was therefore, randomly extracted from PPI-complete.

In terms of runtime, on all the datasets, CHISEL is the fastest.
PBound particularly suffers in compute time as it iterates over all
possible minimum spanning trees. While running time for Fuzzy
is low owing to enumeration of all the source-destination paths, it
requires a very high indexing time. CHISEL requires considerably

1662

version-10-5.string-db.org
version-10-5.string-db.org
www.yago-knowledge.org
www.imdb.com/interfaces

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 3 5 7 9 11 13

A
cc

ur
ac

y

Query Size

ChiSeL exact ChiSeL noisy PBound exact PBound noisy Fuzzy exact Fuzzy noisy

 0 3 5 7 9 11 13
Query Size

ChiSeL exact ChiSeL noisy PBound exact PBound noisy Fuzzy exact Fuzzy noisy

 0 3 5 7 9 11 13
Query Size

ChiSeL exact ChiSeL noisy PBound exact PBound noisy Fuzzy exact Fuzzy noisy

 0 3 5 7 9 11 13
Query Size

ChiSeL exact ChiSeL noisy PBound exact PBound noisy Fuzzy exact Fuzzy noisy

(a) YAGO (b) IMDb (c) PPI-small (d) PPI-complete
Figure 2: Accuracy comparison of different algorithms over all datasets.

10-4

10-2

100

102

104

106

 0 3 5 7 9 11 13

Ru
nt

im
e

(s
)

Query Size

ChiSeL exact
ChiSeL noisy

PBound exact
PBound noisy

Fuzzy exact
Fuzzy noisy

 0 3 5 7 9 11 13
Query Size

ChiSeL exact
ChiSeL noisy

PBound exact
PBound noisy

Fuzzy exact
Fuzzy noisy

 0 3 5 7 9 11 13
Query Size

ChiSeL exact
ChiSeL noisy

PBound exact
PBound noisy

Fuzzy exact
Fuzzy noisy

 0
 0.5

 1
 1.5

 2
 2.5

 0 3 5 7 9 11 13

Ru
nt

im
e

(s
)

Query Size

ChiSeL exact
ChiSeL noisy

(a) YAGO (b) IMDb (c) PPI-small (d) PPI-complete

Figure 3: Runtime comparison of different algorithms over all datasets.

more running time for YAGO due to the fact that the vertex labels in
YAGO are very long and can have special characters and, therefore,
label matching requires a lot of time. Interestingly, CHISEL took
the longest time for PPI-small, almost 15 times more than even the
total PPI-complete dataset. The reason was the very large average
degree of vertices in PPI-small. To understand this effect further,
we did more experiments on the average degree (see Section 5.5.1).

The quality of CHISEL was also the best for all the datasets.
While Fuzzy produced medium quality results for YAGO and IMDb,
it completely failed for PPI-small. Fuzzy had too many paths to
search since the number of labels were low and, hence, it ended up
not finding the desired subgraphs for almost all the queries.

CHISEL, thus, efficiently extracts subgraphs with better struc-
tural similarity (edge and label matches) to the query.

5.3 Detailed Analysis
To further analyze the performance of the algorithms, we con-

ducted experiments to capture the accuracy and runtime over dif-
ferent query types and query sizes. Figure 2 and Figure 3 report the
accuracy and the runtime performance of all the algorithms.

CHISEL was seen to perform the best in terms of quality, with
nearly 100% accuracy for exact queries for almost all the query
sizes for all the datasets except PPI-complete. The accuracy num-
bers were also observed to be stable across different query sizes,
thereby demonstrating the robustness of our proposed framework.
Even for the noisy query scenario, the accuracy was around 0.8 for
most of the datasets and more than 0.9 for PPI-small.

PBound depicted a sharp drop in accuracy with increase in query
sizes. This is due to its inability to iterate over minimum spanning
trees with distinct vertex sets within a reasonable runtime. Fuzzy
showed a steady performance and was not affected much by the
query size. It, however, performed very poorly for PPI-small.

Figure 3 shows that CHISEL was the fastest for almost all the
scenarios. Fuzzy quickly becomes impractical for larger query
sizes and requires a very large time for query sizes 9 and above.
Both PBound and Fuzzy performed very poorly on PPI-small due
to the extremely high average degree. The number of paths and
subgraphs are too many when the density of the graph is high,and,
hence, these algorithms do not scale for such dense graphs.

 0

 1000

 2000

 3000

 4000

1K 10K 50K 100K

Ru
nt

im
e

(s
)

Graph Size

ChiSeL exact
ChiSeL noisy
PBound exact
PBound noisy
Fuzzy exact
Fuzzy noisy

Figure 4: Scalability of CHISEL, PBound and Fuzzy on graphs
sampled from PPI-complete dataset.

An interesting anomalous behavior of runtime with query sizes
was observed for IMDb and PPI-complete datasets for CHISEL.
This is explored and explained in detail later in Section 5.5.5.

5.4 Scalability Study
We next study the scalability of the different algorithms with re-

spect to input graph size. For that, different sized subsets from the
PPI-complete dataset were created maintaining the average degree
in each subset to be around 250. We then pose queries of size 5, for
both exact and noisy scenarios, on these subsets. Figure 4 reports
the running times observed on these sampled subgraphs. PBound
performs poorly due to its enumeration of all minimum spanning
trees. While for very small graphs, Fuzzy is comparable in run-
time with CHISEL, the overall scalability of CHISEL is better. For
graphs with size greater than 50K, the runtime of CHISEL is or-
ders of magnitude lesser than the competing approaches. Overall,
the scalability over graph size for all algorithms is at most linear.

5.5 Analysis of Effect of Parameters
In this section, we empirically explore the robustness of per-

formance for our proposed CHISEL algorithm. We vary different
characteristics of the input and query graphs to study their impact
on the accuracy and runtime of CHISEL.

5.5.1 Average Graph Degree
We first analyze the effect of average degree of vertices in the

input graph over the performance of CHISEL. To that end, we took
the entire PPI-small dataset and created various edge-subsets of it.

1663

 0
 0.2
 0.4
 0.6
 0.8

 1

0 100 500 1000 1800

A
cc

ur
ac

y

Avg. Degree

ChiSeL exact

ChiSeL noisy 0

 1

 2

 3

0 100 500 1000 1800

Ru
nt

im
e

(s
)

Avg. Degree

ChiSeL exact

ChiSeL noisy

(a) Accuracy (b) Running time
Figure 5: Effect of average degree.

 0
 0.2
 0.4
 0.6
 0.8

 1

0 5 10 50 100

A
cc

ur
ac

y

Graphs returned (k)

PPI

IMDb

YAGO
 0

 1

 2

0 5 10 50 100

Ru
nt

im
e

(s
)

Graphs returned (k)

PPI

IMDb

YAGO

(a) Accuracy (b) Running time
Figure 6: Effect of number of subgraphs returned.

We created different samples of decreasing density from it by ran-
domly deleting edges. The number of unique labels were more or
less conserved. Queries of size 5 were then posed on these graphs.

While we observed no appreciable effect on accuracy, the run-
time increased considerably with increase in average degree (Fig-
ure 5). This is due to the increase in the number of neighborhoods,
affecting the time taken by CHISEL to explore and populate the
secondary heap. To understand it further, we measured the size of
the secondary heap, averaged across different queries, for the dif-
ferent scenarios. We see that while the secondary heap size is only
9 when the average degree is 20, it increases steadily across in-
creasing average degree and reaches 543 when average degree is
1789. Consequently, the running time increases considerably.

5.5.2 Number of Subgraphs Returned, Top-k
The next set of experiments measures the effect of number of

subgraphs returned, i.e., the parameter k for the top-k search. Fig-
ure 6 shows that there is negligible effect of k on accuracy for all
the datasets and on runtime for IMDb and YAGO datasets. The
runtime increases only slightly for PPI-complete mainly because
of the increase in the number of secondary heap initializations.

5.5.3 Perturbation of Edge Probabilities
Since edge probabilities model the uncertainty in structure for

our problem setting, we next study how changes in edge existence
probabilities affect the performance of CHISEL. For this study,
we use PPI-complete, albeit with a slight modification. The in-
put graph edges that are present in the query are modified to be
certain, i.e., the probabilities of those edges in the original graph
are set to 1.0. We refer to this modified dataset as perturbed, while
unperturbed denotes the original un-altered PPI-complete graph.
Further, as before, we consider both the exact and noisy query sce-
narios. Figure 7 depicts the accuracy of CHISEL with changes in
the probability model of an input graph with varying query sizes.

The accuracy increases considerably for the perturbed version of
PPI-complete. This intuitively follows from the possible world sce-
nario concept. Since the exact matches to the query edges are mod-
ified to have probability 1.0, the exact query subgraph is extracted
and returned by CHISEL with higher chi-square (at the top of the
ranking) in most cases, thereby leading to an increase in accuracy.
This provides a valuable insight that our proposed framework for
subgraph matching based on statistical significance inherently takes
into account the possible world modeling.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 3 7 11 15 19 23

A
cc

ur
ac

y

Query Size

exact, unperturbed
noisy, unperturbed
exact, perturbed
noisy, perturbed

Figure 7: Effect of perturbation of edge probabilities.

 0

 0.04

 0.08

 0.12

 0 3 5 7 9 11 13

Ru
nt

im
e

(s
)

Query Size

IMDb IMDb Induced

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 3 5 7 9 11 13

A
cc

ur
ac

y

Query Size

IMDb

IMDb - Induced

(a) Running time (b) Accuracy
Figure 8: Effect of query degree distribution on runtime and
accuracy for original and controlled degree distribution.

5.5.4 Possible World Semantics Modeling
To understand the effects of sampling of possible worlds, we did

the following experiment. From the PPI-small dataset, we created
various “certain” graphs by sampling the edges according to their
existence probabilities. In other words, in each such sampled possi-
ble world, an edge is present with its corresponding existence prob-
ability. Each such sampled world, therefore, contains a subset of
the original set of edges, but is certain in nature and no longer a
probabilistic graph. For each sampled certain graph, we ran an ap-
proximate graph querying algorithm that works for certain graphs.
We chose the NAGA algorithm [27] since it reports fairly accurate
results and works on the same principles of statistical significance.

For each scenario, we created a number of sampled possible
world graphs, varying from 100 to 10000. We then ran NAGA
for queries of size 5 on every possible world graph, and report the
best accuracy obtained over any possible world graph. Despite cre-
ating as large as 10000 possible worlds, the best accuracy obtained
over a query graph was only 0.33. On an average, the best accuracy
over all the queries was only 0.15.

Since the number of possible worlds for PPI-small is extremely
large, it may be that 10000 samples were not enough. We, thus,
chose a very small graph – the input graphG shown in the example
in Figure 1. Since there are only 6 edges in it, the total number of
possible worlds is only 26 = 64. We sampled 20 possible world
graphs (∼ 31%) from it, and ran the queryQ in Figure 1 against the
possible worlds using NAGA. For these samples, the best accuracy
achieved by NAGA was only 0.50, while CHISEL demonstrated an
accuracy of 0.75. The best accuracy level of 0.75 was attained by
NAGA only after sampling 41 worlds (∼ 64%).

This shows that sampling the possible worlds and running an
approximate graph matching algorithm that works only for certain
graphs is not enough to obtain good results, and is neither effective
nor scalable. CHISEL successfully avoids this expensive sampling
procedure by utilizing the possible world modeling directly in its
framework to find good matches.

5.5.5 Query Degree Distribution
An interesting erratic effect was observed over different query

sizes for runtime for both IMDb and PPI-complete datasets (as ear-
lier pointed out in Section 5.3). As shown in Figure 8(a), the query
processing time was highest for 5-vertex sized queries while par-
ticularly low for the larger 7- and 9-vertex sized queries. On fur-

1664

Table 4: Indexing time and memory consumption of CHISEL.

Measures PPI-complete YAGO IMDb

Time (s) 5616.28 66.71 60.16
Memory (GB) 440.00 8.40 7.00

ther analysis, it was observed that queries, consisting of vertices
whose label-matching vertices in the input graph exhibit large de-
grees, adversely affected the matching subgraph computation time.
Since the query sets for each query size were chosen randomly, the
set for 5-vertex size had a particularly high number of such high-
degree graphs than 7- and 9-vertex sets and, hence, the “anomaly”.

To confirm the above behavior and to alleviate the above occur-
rence, we sampled a query set from IMDb with similar vertex de-
gree distribution. We refer to this query set as IMDb-Induced. The
query set was chosen in a progressive manner as follows. First,
random queries of size 13 were chosen. Then, queries of size 11
were chosen by considering subgraphs from this set, and so on.
This ensures that the degree distribution of the different query sets
do not vary widely. On this modified query set, the query pro-
cessing time increases only slightly and smoothly across the query
sizes (Figure 8(b)). This confirms the effect of query degree dis-
tribution on the runtime complexity of CHISEL. Thus, it was the
presence of such anomalous high-degree query vertices (in the ran-
domly generated queries) that attributed to the erratic behavior at
some points of Figure 3. Removing such anomalous vertices re-
sulted in a smoother curve, as shown in Figure 8(a).

Figure 8(b) shows that there is no appreciable effect of query de-
gree distribution on the accuracy of the algorithms. Similar results
were observed for the PPI-complete dataset as well.

5.6 Indexing Requirements
Table 4 tabulates the indexing time and memory requirements

of CHISEL for the different datasets. Even for the very large PPI-
complete dataset with more than a billion edges, the memory foot-
print is not very high and the indexing time is less than 2 hours. The
smaller-sized YAGO and IMDb datasets require only a minute and
less than 10GB of memory. This shows that CHISEL is applicable
for diverse applications using commodity hardware.

5.7 Real World Use Case: StringDB
In this section, we show the performance of CHISEL in a real

life use case for example queries from String DB (version10.
string-db.org/cgi/input.pl) containing synthetases and
regulators connected to long chain fatty acyl-CoA synthetase. We
obtain the “most confident” gold annotated result for 2 different
queries (having 11 and 16 vertices) obtained by varying the num-
ber of interactors. The result consists of the exact locations (in
terms of vertex IDs) of the PPI-complete graph where this query
structure is important (in terms of score). Detection of such sites is
useful in identifying mutation regions for early detection of cancer
and other diseases.

We compare the performance of CHISEL and NAGA [27] in ex-
tracting subgraphs similar to the queries. Figure 9 depicts the ob-
tained matching subgraphs from the algorithms. (Node identifiers
shown in the figure are protein names and are different from labels
of orthologous groups that are queried.) CHISEL demonstrates a
high structural similarity for both the queries and is seen to outper-
form NAGA. The accuracy gap of CHISEL is more for the larger
query since the discriminative power from the probabilistic mod-
eling and structural similarity via statistical significance increases
when more number of vertices and edges are involved. The inher-
ent modeling of PWS by CHISEL (by taking the edge existential

(a) Query

(b) CHISEL

(c) NAGA

Figure 9: Evaluation on real dataset: (a) String DB queries,
and corresponding results from (b) CHISEL and (c) NAGA.

probabilities into account) enables it to accurately identify the lo-
cation of the query subgraphs that are most important in terms of
the protein interactions. It needs to be noted that there are several
occurrences of the same query subgraph based on labels and edges
in the PPI-complete graph. However, the vertex IDs provided as
part of the ground truth provide the exact list of vertices that are
the most important. As shown in Figure 9, CHISEL correctly finds
most of them and outperforms NAGA. The average query process-
ing time for the two queries for NAGA was 27.6s, while CHISEL
took only 0.31s.

Hence, it can be concluded that CHISEL provides an effective
and efficient algorithm for approximate subgraph matching in un-
certain graphs for real-life use cases.

6. CONCLUSIONS
This paper proposed CHISEL to handle approximate subgraph

querying in large labeled probabilistic graphs. Our working prin-
ciple hinges on the principle of statistical significance measured
using the chi-squared statistic and greedy neighborhood search in-
tegrating both structural similarity and possible world semantics.
Experiments showed that CHISEL is effective and efficient on large-
scale graphs. Using it for a real-life use case showed that the results
found were highly relevant and accurate.

In future, we would like to extend the solution to other types of
graphs such as weighted graphs, hyper-graphs, etc.

Acknowledgments
We thank the anonymous reviewers for their constructive comments,
Garima Gaur for her helpful suggestions, and the authors of [27] for
the implementation details of NAGA.

1665

version10.string-db.org/cgi/input.pl
version10.string-db.org/cgi/input.pl

7. REFERENCES
[1] A. Abou-Rjeili and G. Karypis. Multilevel Algorithms for

Partitioning Power-law Graphs. In International Parallel
and Distributed Processing Symposium (IPDPS), pages
124–124, 2006.

[2] E. Adar and C. Re. Managing Uncertainty in Social
Networks. Data Engineering Bulletin, 30(2):15–22, 2007.

[3] C. C. Aggarwal and H. Wang. Graph Data Management and
Mining: A Survey of Algos. and Applications. In Managing
and Mining Graph Data, pages 13–68. Springer, 2010.

[4] A. Armiti and M. Gertz. Geometric Graph Matching and
Similarity: A Probabilistic Approach. In International
Conference on Scientific and Statistical Database
Management (SSDBM), pages 1–12, 2014.

[5] A. Arora, M. Sachan, and A. Bhattacharya. Mining
Statistically Significant Connected Subgraphs in Vertex
Labeled Graphs. In International Conference on
Management of Data (SIGMOD), pages 1003–1014, 2014.

[6] S. Asthana, O. D. King, F. D. Gibbons, and F. P. Roth.
Predicting Protein Complex Membership using
Probabilistic Network Reliability. Genome Research,
14(6):1170–1175, 2004.

[7] L. Babai. Graph Isomorphism in Quasipolynomial Time. In
Symposium on Theory of Computing (STOC), pages
684–697, 2016.

[8] F. R. Bach, M. Zaslavskiy, and J. P. Vert. Global Alignment
of Protein LC Protein Interaction Networks by Graph
Matching Methods. Bioinformatics, 15(12):259–267, 2009.

[9] P. Barcelo, L. Libkin, and J. L. Reutter. Querying Graph
Patterns. In Symposium on Principles of Database Systems
(PODS), pages 199–210, 2011.

[10] G. Bejerano, N. Friedman, and N. Tishby. Efficient Exact
p-value Computation for Small Sample, Sparse and
Surprisingly Categorical Data. Journal of Computational
Biology, 11(5):867–886, 2004.

[11] P. Boldi, F. Bonchi, A. Gionis, and T. Tassa. Injecting
Uncertainty in Graphs for Identity Obfuscation. PVLDB,
5(11):1376–1387, 2012.

[12] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R.
Hruschka Jr., and T. M. Mitchell. Toward an Architecture
for Never-ending Language Learning. In Conference on
Artificial Intelligence (AAAI), pages 1306–1313, 2010.

[13] R. Chandrasekar. Elementary? Question Answering, IBM’s
Watson, and the Jeopardy! Challenge. Resonance,
19:222–241, 2014.

[14] C. Chen, X. Yan, S. Y. Philip, J. Han, D. Q. Zhang, and
X. Gu. Towards Graph Containment Search and Indexing.
In PVLDB, pages 926–937, 2007.

[15] Y. Chen, X. Zhao, X. Lin, Y. Wang, and D. Guo. Efficient
Mining of Frequent Patterns on Uncertain Graphs.
Transactions on Knowledge and Data Engineering,
31(2):287–300, 2019.

[16] J. Cheng, Y. Ke, W. Ng, and A. Lu. FG-Index: Towards
Verification-free Query Processing on Graph Databases. In
International Conference on Management of Data
(SIGMOD), pages 857–872, 2007.

[17] T. Y. Cheung. State of the Art of Graph-based Data Mining.
Transactions on Software Engineering, 5(1):59–68, 1983.

[18] D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty
Years of Graph Matching in Pattern Recognition.
International Journal of Pattern Recognition and Artificial
Intelligence, 18(3):265–298, 2004.

[19] S. A. Cook. The Complexity of Theorem-proving
Procedures. In Symposium on Theory of Computing
(STOC), pages 151–158, 1971.

[20] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A
(sub)graph Isomorphism Algorithm for Matching Large
Graphs. Transactions on Pattern Analysis and Machine
Intelligence, 26(10):1367–1372, 2004.

[21] N. Dalvi and D. Suciu. Efficient Query Evaluation on
Probabilistic Databases. International Journal of Very
Large Data Bases, 16(4):523–544, 2007.

[22] R. de Virgilio, A. Maccioni, and R. Torlone. Approximate
Querying of RDF Graphs via Path Alignment. Distributed
Parallel Databases, 33:555–581, 2015.

[23] S. Dutta. MIST: Top-k Approximate Sub-string Mining
Using Triplet Statistical Significance. In European
Conference on Information Retrieval (ECIR), pages
284–290, 2015.

[24] S. Dutta and A. Bhattacharya. Most Significant Substring
Mining based on Chi-square Measure. In Pacific-Asia
Conference on Knowledge Discovery and Data Mining
(PAKDD), pages 319–327, 2010.

[25] S. Dutta and A. Bhattacharya. Mining Statistically
Significant Substrings Based on the Chi-Square Measure. In
Pattern Discovery Using Sequence Data Mining:
Applications and Studies, pages 73–82. IGI Global, 2012.

[26] S. Dutta and J. Lauri. Finding a Maximum Clique in Dense
Graphs via Chi-Square Statistics. In International
Conference on Information and Knowledge Management
(CIKM), pages 2421–2424, 2019.

[27] S. Dutta, P. Nayek, and A. Bhattacharya. Neighbor-Aware
Search for Approximate Labeled Graph Matching using the
Chi-Square Statistics. In International Conference on World
Wide Web (WWW), pages 1281–1290, 2017.

[28] Y. Fang, R. Cheng, X. Li, S. Luo, and J. Hu. Effective
Community Search Over Large Spatial Graphs. PVLDB,
10(6):709–720, 2017.

[29] B. Gallagher. Matching Structure and Semantics: A Survey
on Graph-based Pattern Matching. In Conference on
Artificial Intelligence (AAAI), pages 45–53, 2006.

[30] H. H. Gan, D. Fera, J. Zorn, N. Shiffeldrim, M. Tang,
U. Laserson, N. Kim, and T. Schlick. RAG:
RNA-As-Graphs Database - Concepts, Analysis, and
Features. Nutrition and Health, 5(1-2):1285–1291, 1987.

[31] Y. Gao, X. Miao, G. Chen, B. Zheng, D. Cai, and H. Cui.
On Efficiently Finding Reverse k-nearest Neighbors over
Uncertain Graphs. The VLDB Journal, 26:467–492, 2017.

[32] R. Giugno and D. Shasha. GraphGrep: A Fast and Universal
Method for Querying Graphs. In International Conference
on Pattern Recognition (ICPR), pages 112–115, 2002.

[33] Y. Gu, C. Gao, L. Wang, and G. Yu. Subgraph Similarity
Maximal All-matching over a Large Uncertain Graph. In
International Conference on World Wide Web (WWW),
pages 755–782, 2016.

[34] P. Hall. Chi-Squared Approximations to the Distribution of
a Sum of Independent Random Variables. The Annals of
Probability, 11(4):1028–1036, 1983.

[35] S. Han, Z. Peng, and S. Wang. The Maximum Flow
Problem of Uncertain Network. Information Sciences,
265:167–175, 2014.

[36] W. S. Han, J. Lee, M. D. Pham, and J. X. Yu. iGraph: A
Framework for Comparisons of Disk-based Graph Indexing

1666

Techniques. PVLDB, 3(1-2):449–459, 2010.
[37] P. Hintsanen and H. Toivonen. Finding Reliable Subgraphs

from Large Probabilistic Graphs. In International
Conference on Principles and Practice of Knowledge
Discovery in Databases (PKDD), pages 3–23, 2008.

[38] M. Hua and J. Pei. Probabilistic Path Queries in Road
Networks: Traffic Uncertainty Aware Path Selection. In
International Conference on Extending Database
Technology (EDBT), pages 347–358, 2010.

[39] Y. Jia, J. Zhang, and J. Huan. An Efficient Graph-mining
Method for Complicated and Noisy Data with Real-world
Applications. Knowledge and Information Systems,
28(2):423–447, 2011.

[40] H. Jiang, H. Wang, P. S. Yu, and S. Zhou. GString: A Novel
Approach for Efficient Search in Graph Databases. In
International Conference on Data Engineering (ICDE),
pages 566–575, 2007.

[41] R. Jiang, Z. Tu, T. Chen, and F. Sun. Network Motif
Identification in Stochastic Networks. Proceedings of the
National Academy of Sciences, 103(25):9404–9409, 2006.

[42] R. Jin, L. Liu, and C. C. Aggarwal. Discovering Highly
Reliable Subgraphs in Uncertain Graphs. In Conference on
Knowledge Discovery and Data Mining (KDD), pages
992–1000, 2011.

[43] R. Jin, L. Liu, B. Ding, and H. Wang. Distance-constraint
Reachability Computation in Uncertain Graphs. PVLDB,
4(9):551–562, 2011.

[44] A. Jüttner and P. Madarasi. VF2++ - An Improved
Subgraph Isomorphism Algorithm. Discrete Applied
Mathematics, 242:69–81, 2018.

[45] V. Kassiano, A. Gounaris, A. N. Papadopoulos, and
K. Tsichlas. Mining Uncertain Graphs: An Overview. In
International Symposium on Algorithmic Aspects of Cloud
Computing (ALGOCLOUD), pages 87–116, 2016.

[46] B. P. Kelley, B. Yuan, F. Lewitter, R. Sharan, B. Stockwell,
and T. Ideker. PathBLAST: A Tool for Alignment of Protein
Interaction Netw. Nucleic Acids Research, 32:83–88, 2004.

[47] A. Khan and L. Chen. On Uncertain Graphs Modeling and
Queries. PVLDB, 8(12):2042–2043, 2015.

[48] A. Khan, Y. Wu, C. C. Aggarwal, and X. Yan. NeMa: Fast
Graph Search with Label Similarity. PVLDB,
6(3):181–192, 2013.

[49] A. Khan, X. Yan, and K. L. Wu. Towards Proximity Pattern
Mining in Large Graphs. In International Conference on
Management of Data (SIGMOD), pages 867–878, 2010.

[50] G. Kollios, M. Potamias, and E. Terzi. Clustering Large
Probabilistic Graphs. Transactions of Knowledge and Data
Engineering, 25(2):325–336, 2011.

[51] S. Kpodjedo, P. Galinier, and G. Antoniol. Using Local
Similarity Measures to Efficiently Address Approx. Graph
Matching. Discrete Appl. Maths., 164:161–177, 2014.

[52] M. Kuramochi and G. Karypis. Frequent Subgraph
Discovery. In International Conference on Data Mining
(ICDM), pages 313–320, 2001.

[53] M. Kuramochi and G. Karypis. GREW – A Scalable
Frequent Subgraph Discovery Algorithm. In International
Conference on Data Mining (ICDM), pages 439–442, 2004.

[54] M. Kuramochi and G. Karypis. Finding Frequent Patterns
in a Large Sparse Graph. Data Mining & Knowledge
Discovery, 11(3):243–271, 2005.

[55] J. Larrosa and G. Valiente. Constraint Satisfaction

Algorithms for Graph Pattern Matching. Mathematical
Structures in Computer Science, 12(4):403–422, 2002.

[56] J. Leskovec and C. Faloutsos. Sampling from Large
Graphs. In Conference on Knowledge Discovery and Data
Mining (KDD), pages 631–636, 2006.

[57] G. Li, L. Yan, and Z. Ma. An Approach for Approximate
Subgraph Matching in Fuzzy RDF Graph. Fuzzy Sets and
Systems, 376:106–126, 2019.

[58] J. Li, Z. Zou, and H. Gao. Mining Frequent Subgraphs over
Uncertain Graph Databases under Probabilistic Semantics.
The VLDB Journal, 21(6):753–777, 2012.

[59] X. Li, R. Cheng, Y. Fang, J. Hu, and S. Maniu. Scalable
Evaluation of k-NN Queries on Large Uncertain Graphs. In
International Conference on Extending Database
Technology (EDBT), pages 181–192, 2018.

[60] X. Lian, L. Chen, and G. Wang. Quality-Aware Subgraph
Matching Over Inconsistent Probabilistic Graph Databases.
Transactions on Knowledge and Data Engineering,
28(6):1560–1574, 2016.

[61] Z. Liang, M. Xu, M. Teng, and L. Niu. NetAlign: A
Web-based Tool for Comparison of Protein Interaction
Networks. Bioinfomatics, 22(17):2175–2177, 2006.

[62] L. Liu, R. Jin, C. Aggrawal, and Y. Shen. Reliable
Clustering on Uncertain Graphs. In International
Conference on Data Mining (ICDM), pages 459–468, 2012.

[63] A. Mahmood, H. Farooq, and J. Ferzund. Large Scale
Graph Matching (LSGM): Techniques, Tools, Applications
and Challenges. International Journal of Advanced
Computer Science and Applications, 8(4):494–499, 2017.

[64] S. Maniu, R. Cheng, and P. Senellart. An Indexing
Framework for Queries on Probabilistic Graphs.
Transactions on Database Systems, 42(2):1–34, 2017.

[65] B. T. Messmer and H. Bunke. Efficient Subgraph
Isomorphism Detection: A Decomposition Approach.
Transactions on Knowledge and Data Engineering,
12(2):307–323, 2000.

[66] T. Mitchell, W. Cohen, E. Hruscha, P. Talukdar,
J. Betteridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel,
J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohammad,
N. Nakashole, E. Platanios, A. Ritter, M. Samadi,
B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen,
A. Saparov, M. Greaves, and J. Welling. Never-Ending
Learning. In Conference on Artificial Intelligence (AAAI),
pages 2302–2310, 2015.

[67] T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, B. Yang,
J. Betteridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel,
J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed,
N. Nakashole, E. Platanios, A. Ritter, M. Samadi, B. Settles,
R. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov,
M. Greaves, and J. Welling. Never-Ending Learning.
Communications of the ACM, 61(5):103–115, 2018.

[68] M. Mongiovi, R. Di Natale, R. Guigno, A. Pulvirenti,
A. Ferro, and R. Sharan. SIGMA: A Set-Cover-Based
Inexact Graph Matching Algo. Journal of Bioinformatics
and Computational Biology, 8(2):199–218, 2010.

[69] W. E. Moustafa, A. Kimmig, A. Deshpande, and L. Getoor.
Subgraph Pattern Matching over Uncertain Graphs with
Identity Linkage Uncertainty. In International Conference
on Data Engineering (ICDE), pages 904–915, 2014.

[70] O. Papapetrou, E. Ioannou, and D. Skoutas. Efficient
Discovery of Frequent Subgraph Patterns in Uncertain
Graph Databases. In International Conference on Extending

1667

Database Technology (EDBT), pages 355–366, 2011.
[71] P. Parchas, F. Gullo, D. Papadias, and F. Bonchi. The

Pursuit of a Good Possible World: Extracting
Representative Instances of Uncertain Graphs. In
International Conference on Management of Data
(SIGMOD), pages 967–978, 2014.

[72] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios.
K-nearest Neighbors in Uncertain Graphs. PVLDB,
3(1-2):997–1008, 2010.

[73] T. Read and N. Cressie. Pearson’s χ2 and the Likelihood
Ratio Statistic G2: A Comparative Review. International
Statistical Review, 57(1):19–43, 1989.

[74] T. R. C. Read and N. A. C. Cressie. Goodness-of-fit
Statistics for Discrete Multivariate Data. Springer, 1988.

[75] M. Rotmensch, Y. Halpern, A. Tlimat, S. Horng, and
D. Sontag. Learning a Health Knowledge Graph from
Electronic Medical Records. Nature Scientific Rep., 7, 2017.

[76] M. Sachan and A. Bhattacharya. Mining Statistically
Significant Substrings using the Chi-Square Statistic.
PVLDB, 5(10):1052–1063, 2012.

[77] H. Shang, Y. Zhang, X. Lin, and J. Yu. Taming Verification
Hardness: An Efficient Algorithm for Testing Subgraph
Isomorphism. PVLDB, 1(1):364–375, 2008.

[78] R. Singh, J. Xu, and B. Berger. Global Alignment of
Multiple Protein Interaction Networks with Application to
Func. Orthology Detection. Proceedings of the National
Academy of Sciences, 105(35):12763–12768, 2008.

[79] S. Song, Z. Zou, and K. Liu. Triangle-based Representative
Possible Worlds of Uncertain Graphs. In International
Conference on Database Systems for Advanced
Applications (DASFAA), pages 283–298, 2016.

[80] S. Sun and Q. Luo. Scaling Up Subgraph Query Proc. with
Efficient Subgraph Matching. In International Conference
on Data Engineering (ICDE), pages 220–231, 2019.

[81] Y. Tian, R. McEachin, C. Santos, D. States, and J. Patel.
SAGA: A Subgraph Matching Tool for Biological Graphs.
Bioinformatics, 23(2):232–239, 2006.

[82] Y. Tian and J. Patel. TALE: A Tool for Approximate Large
Graph Matching. In International Conference on Data
Engineering (ICDE), pages 963–972, 2008.

[83] H. Tong and C. Faloutsos. Center-piece Subgraphs: Prob.
Defn. and Fast Solutions. In Conference on Knowledge
Discovery and Data Mining (KDD), pages 404–413, 2006.

[84] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad.
Fast Best-effort Pattern Matching in Large Attributed
Graphs. In Conference on Knowledge Discovery and Data
Mining (KDD), pages 737–746, 2007.

[85] W. H. Tsai and K. Fu. Error-correcting Isomorphisms of
Attributed Relational Graphs for Pattern Recognition.
Transactions on Systems, Man, and Cybernetics,
9(12):757–768, 1979.

[86] J. R. Ullmann. An Algorithm for Subgraph Isomorphism.
Journal of ACM, 23(1):31–42, 1976.

[87] L. G. Valiant. The Complexity of Enumeration and
Reliability Prob. J. of Computing, 8(3):410–421, 1979.

[88] M. Wang, J. Zheng, J. Liu, W. Hu, S. Wang, X. Li, and
W. Liu. PDD Graph: Bridging Electronic Medical Records
and Biomedical Knowledge Graphs via Entity Linking. In
International Semantic Web Conference (ISWC), pages
219–227, 2017.

[89] X. Yan and J. Han. gSpan: Graph-Based Substructure
Pattern Mining. In International Conference on Data

Mining (ICDM), pages 721–724, 2002.
[90] X. Yan, P. S. Yu, and J. Han. Graph Indexing Based on

Discriminative Frequent Structure Analysis. Transactions
on Database Systems, 30(4):960–993, 2005.

[91] X. Yan, P. S. Yu, and J. Han. Substructure Similarity Search
in Graph Databases. In International Conference on
Management of Data (SIGMOD), pages 766–777, 2005.

[92] X. Yu, Y. Sun, P. Zhao, and J. Han. Query-driven Discovery
of Semantically Similar Substructures in Heterogeneous
Networks. In Conference on Knowledge Discovery and
Data Mining (KDD), pages 1500–1503, 2012.

[93] Y. Yuan, G. Wang, and L. Chen. Pattern Match Query in a
Large Uncertain Graph. In International Conference on
Information and Knowledge Management (CIKM), pages
519–528, 2014.

[94] Y. Yuan, G. Wang, L. Chen, and B. Ning. Efficient Pattern
Matching on Big Uncertain Graphs. Information Sciences,
339:369–394, 2016.

[95] Y. Yuan, G. Wang, L. Chen, and H. Wang. Efficient
Subgraph Similarity Search on Large Probabilistic Graph
Databases. PVLDB, 5(9):800–811, 2012.

[96] Y. Yuan, G. Wang, L. Chen, and H. Wang. Graph Similarity
Search on Large Uncertain Graph Databases. The VLDB
Journal, 24(2):271–296, 2015.

[97] Y. Yuan, G. Wang, H. Wang, and L. Chen. Efficient
Subgraph Search over Large Uncertain Graphs. PVLDB,
4(11):876–886, 2011.

[98] R. Zass and A. Shashua. Probabilistic Graph and
Hypergraph Matching. In Conference on Computer Vision
and Pattern Recognition (CVPR), pages 34–41, 2008.

[99] Z. Zeng, A. K. H. Tung, J. Wang, J. Feng, and L. Zhou.
Comparing Stars: On Approximating Graph Edit Distance.
PVLDB, 2(1):25–36, 2009.

[100] S. Zhang, J. Li, H. Gao, and Z. Zou. A Novel Approach for
Efficient Supergraph Query Processing on Graph
Databases. In International Conference on Extending
Database Technology (EDBT), pages 204–215, 2009.

[101] S. Zhang, S. Li, and J. Yang. GADDI: Distance Index
Based Subgraph Matching in Biological Networks. In
International Conference on Extending Database
Technology (EDBT), pages 192–203, 2009.

[102] S. Zhang, J. Yang, and W. Jin. SAPPER: Subgraph
Indexing and Approximate Matching in Large Graphs.
PVLDB, 3(1-2):1185–1194, 2010.

[103] P. Zhao and J. Han. On Graph Query Optimization in Large
Networks. PVLDB, 3(1-2):340–351, 2010.

[104] L. Zou, L. Chen, and Y. Lu. Top-k Subgraph Matching
Query in a Large Graph. In PhD Workshop: International
Conference on Information and Knowledge Management
(CIKM), pages 139–146, 2007.

[105] L. Zou, L. Chen, J. X. Yu, and Y. Lu. A Novel Spectral
Coding in a Large Graph Database. In International
Conference on Extending Database Technology (EDBT),
pages 181–192, 2008.

[106] Q. Zou, S. Liu, and W. W. Chu. CTree: A Compact Tree for
Indexing XML Data. In International Workshop on Web
Info. and Data Management (WIDM), pages 39–46, 2004.

[107] Z. Zou, H. Gao, and J. Li. Discovering Frequent Subgraphs
over Uncertain Graph Databases under Probabilistic
Semantics. In Conference on Knowledge Discovery and
Data Mining (KDD), pages 633–642, 2010.

1668

	Introduction
	Real-World Use-Cases
	Problem Definition
	Contributions

	Related Work
	Deterministic Graph Matching
	Approximate Graph Matching
	Probabilistic Graph Matching
	Statistical Significance

	The ChiSeL Algorithm
	Overview
	Indexing Phase
	Vertex-Label Inverted Index
	Neighbor Labels List
	Expected Degree Computation
	Neighbor Label Probabilities

	Querying Phase
	Inverted Lists and Neighborhood Information
	Vertex Pair Generation

	Vertex Pair Chi-Square Computation
	Label Triplet Generation
	Triplet Pair Matching
	Possible Worlds
	Observed Match Symbol Vector
	Multiple Query Triplets
	Efficiently Computing Observed Vectors
	Expected Symbol Vector for Triplet Match
	Chi-Square of a Vertex Pair

	Top-k Subgraph Search
	Primary Heap
	Secondary Heap
	Top-k Search

	Summation of Chi-Square Values
	Complexity Analysis

	Special Cases of Uncertainty
	Edge Labels
	Uncertain Vertices
	Noisy Labels
	Label Uncertainty
	Uncertain Query Graphs

	Experimental Evaluation
	Empirical Setup
	Datasets
	Query Generation
	Competing Methods
	Parameter Setting
	Evaluation Measures

	Overall Results
	Detailed Analysis
	Scalability Study
	Analysis of Effect of Parameters
	Average Graph Degree
	Number of Subgraphs Returned, Top-k
	Perturbation of Edge Probabilities
	Possible World Semantics Modeling
	Query Degree Distribution

	Indexing Requirements
	Real World Use Case: StringDB

	Conclusions
	References

